

ESB Networks – Electricity Association of Ireland – Innovation Workshop

8th July 2021

esbnetworks.ie

- 1. Innovation in ESB Networks Tina McManus – Innovation Manager
- 2. Dingle Project Customer Flexibility Trials Ciaran Geaney – ICT Lead
- 3. Active System Management (ASM) Programme: Ellen Diskin – ASM Programme Manager
- 4. Electrification of Heat and Transport: Emma Silke – Electrification Manager
- 5. Q&A

Innovation in ESB Networks

8th July 2021

Tina McManus – Innovation Manager

2021 Innovation KPIs and Statistics – Year to Date

Innovation Governance Structure

Innovation Process

ESB NETWORKS

Focus Areas Under the 3 Innovation Pillars

Future Customer – Empowering and Supporting Customers and the Economy

- Community Energy
- Peer to Peer
- Flexibility Services
- Energy Storage
- LV Visibility & Modelling

Climate Action – Decarbonising Electricity, Heat and Transport

- Electrification
- Connecting Renewables
- Microgeneration & Storage
- Climate Adaptation Requirements
- Impact of Low-carbon Technologies

Network Resilience – Efficient, Secure, Reliable Electricity

- Smart Grid
- Active Network Management
- > O&M Innovations
- Fault reduction
- Reinforcement Innovations

e.g. Innovative Methods to Connect Renewables to the Grid

e.g. Using Drones and Image Processing Analytics to Inspect Network Assets

Alignment with ESB Networks Strategy & CRU PR5 Objectives

Innovation Project Portfolio Statistics

Current Innovation Type Split

Future Customer Project Portfolio – 18 Month Plan

DEE		ш	2021		2021 20		22			
NEF.			Q1	Q2	Q3	Q4	Q1	Q2		
23	SERVO	В		Q2 '21					$\mathbf{IT} = \mathbf{I}$	nnovation Type
45	StoreNet Customer Side Energy Storage	В	Q1 '21						I = Inc	cremental
51	Smarter HV and MV Customer Connections	I		Q2 '21					B = B	reakthrough
59	Dingle Electrification Project	В		- - -			Q1 '22		R = R	adical
74	Exploration of ASHP for Ireland's Residential Heating Needs	I						Q2 '22		
75	+CityXChange	В		1				Q4 '23		
81	MV Standard Modules - Generation & EV Charging Hub Connections	I					Q1 '22			
98	300kVA Ester Pole Mounted Transformer	Ι		1	Q3 '21					Active
158	Developing 400MHz Spectrum Use for Smart Grid Applications	I						Q4 '25		Projects
169	Improved ADMD Estimates for Domestic Customers	I			Q3 '21					Pipeline
170	Using Real Options for Establishing Investment Justification ADMD Change	В		۰ ۱				Q2 '22		Projects
171	Using Sigfox Temperature Sensors to Assess Substation Loading	I		Q2 '21						Collaboration
172	Estimating Allowable Loading on 15/33kVA Single Phase Transformers	Ι		۰ ۱			Q1 '22			Opportunities
210	REACT - Island energy Self-Sustainability	I		1				Q4 '23		
160	Electrification Uptake Data Analytics Forecasting	I								
214	Optimal Heat Pump Scheduling to Improve Hosting Capacity of Distribution Networks for DERs	В								
ТВА	Investigate Potential Opportunities via the Horizon Europe Programme	B/R			[1	
TBA	Collaboration Opportunities/Public Call for Breakthrough/Radical Projects	B/R							•	

Projects whose objectives are being achieved within the Active System Management Project:

103	P2P and System Wide Economic Analysis (Enabling Active Citizen and Community Participation)	В
104	Real Option Pricing of Flexibility	В
152	Development of LV models for the Future Network Planning and Operations, facilitating active energy citizens (VD Calculator)	I

Links to further information on our Future Customer Projects:

- Project Overview Section 4.4 Innovating to Transform the Electricity Network
- Future Customer Pillar Project Reports
- ESB Networks Innovation Pipeline Projects
- ESB Networks' Dingle Project

Climate Action Project Portfolio – 18 Month Plan

DEE		іт		2021			2022		
KEF.	PROJECT TITLE		Q1	Q2	Q3	Q4	Q1	Q2	IT = Innovation Type
22	Introduction of MV/LV Tap-Changing Transformers	I			Q3 '21				I = Incremental B = Breakthrough
24	Introduction of Alternatives to Creosote Wood Poles	В						Q4 '22	R = Radical
41	Introduction of Sidewalk Transformers	I				Q4 '21			
51	Smarter HV and MV Customer Connections	1		Q2 '21					
62	Unit Substation to 1MVA	I		Q2 '21					
77	Wildlife OHL Contact Prevention	1				Q4 '21			Projects
82	Big Data Analytics for Wind Farm Connections	В				Q4 '21	,		Pipeline
83	Wind Farm - Reactive Power Optimisation (Blackbox)	1			Q3 '21				Projects
133	Tesselo - LiveEO Vegetation Survey System	I		1	Q3 '21				Collaboration Opportunities
216	Investigate Statistical Contributions from Renewable Generation (F-Factor)	В							
ТВА	Investigate Potential Opportunities via the Horizon Europe Programme	B/R							
ТВА	Collaboration Opportunities/Public Call for Breakthrough/Radical Projects	B/R							

Links to further information on our Climate Action Projects:

- Project Overview Section 4.4 Innovating to Transform the Electricity Network
- Climate Action Pillar Project Reports
- ESB Networks Innovation Pipeline Projects

Network Resilience Project Portfolio – 18 Month Plan

DEE		ш		20)21		2022		
NEF.			Q1	Q2	Q3	Q4	Q1	Q2	
3	Nodal Controller for Reactive Power	I			1	Q4 '21			IT = Innovation Type
19	Inspection of OHLs Using Drones and Image Processing Analytics	I			1		1	Q2 '22	I = Incremental
28	DistriHost Mapping Network Capacity	I			T.	Q4 '21			B = Breakthrough
38	Data Analytics to Temperature Correct Loads	I					1	Q2 '22	R = Radical
39	Storm Resilience for Overhead Networks	I				Q4 '21			
49	New Core and Aggregation IP Network	I					1	Q4 '23	
54	Weather Forecasting and Network Damage Prediction	I					1	Q2 '22	
56	Development of Dynamic Line Ratings	I			1		1	Q2 '22	Projects
69	HV Stations Health Index	I			T	Q4 '21			Pineline
102	MV LV Voltage Allocation	I			r. I	1	1	Q3 '22	Projects
150	Novel Use of Drone Technology and Artificial Intelligence for Fault Location and Line Patrolling	I			F.	-	1	Q1 '23	, O a llach ann (i an
153	Leveraging Enhanced LV Monitoring and Data Analytics to Optimise Targeted Network Reinforcement	I			F	-1	1	Q2 '22	
211	Real Time State Estimation on Irish Distribution Network	В			r I	-	1	Q2 '22	opportaintioo
71	Climate Change Adaptation Approaches (flooding)	I					1		
164	Optimised Design for 38kV Arc Suppression Coil (ASC) to Support RES Connections	I							
213	How to Use Data Analytics for Efficient Operation of Distribution Networks	В							
ТВА	Collaboration Opportunities/Public Call for Breakthrough/Radical Projects	В							

Projects whose objectives are being achieved within the Active System Management Project:

151	Identification of Network Configurations for Active Network Management	I
154	Developing and Trialling Novel Approaches to Manage LV Flexibility	В
156	Congestion Management and Capacity Allocation Using Operational Management System	I
205	Framework for Optimal Coordination of NMS and DER	I

Links to further information on our Network Resilience Projects:

- Project Overview Section 4.4 Innovating to Transform the Electricity Network
- Network Resilience Pillar Project Reports
- ESB Networks Innovation Pipeline Projects

NETWORKS

=5=

Collaboration & Dissemination

Public Consultations & Calls

- 8 Public Consultations 2 EOIs
 - Dingle P2P
 - Hybrid Connections

Innovation Webinar Series

Spring & Autumn Innovation Webinar series

ETWORK

Brand Health Survey 'Innovative in Engineering Expertise' 1 6%

Stakeholder Bi-lateral Meetings

- Local authorities
 Dublin Chambers
- Derry City & Strabane
- Academia & Institutes
- Peer DSO's
- **Electricity Suppliers**

Stakeholder Innovation Panel

- Call for Eol in Oct 2020
- > 19 members across 10 sectors
- Meetings Dec & March
- ToR Published

Trade Associated & Rep Groups Distribution Code Review Panel

RECI

DRAI

Local Authorities

Presentations, Papers, Conferences, Membership, Collaboration Projects

- EurElectric, ENA, EPRI
- CIGRE Conference & publications
- Journal publication
- Sogno H2020
- ➢ IERC,MaREI, UCD, TSSG (WIT), UL,
- Close-out & Project Reports
- Dingle Electrification Project

Growing Social Media & awareness

93% of Stakeholders Increased Knowledge & Awareness

12

For any queries on our Innovation Programme or any of the projects listed in our Innovation Project Portfolio, please contact us at innovationfeedback@esbnetworks.ie

Dingle Project Customer Flexibility Trials

Ciaran Geaney

esbnetworks.ie

Dingle Project - Objectives

esbnetworks.ie

Where Could Flexibility Be Used?

- Unlock headroom in distribution network by leveraging effective demand reduction during periods of constraint
- Defer traditional network reinforcements by:
- Optimising the energy usage in participant homes, reducing peak network loadings etc.
- Effective management of demand from eHeat and eTransport will enable more to be accommodated on the network using the existing infrastructure and still meet customer requirements
- Utilising short-term triggered/manual demand response during significant system disturbances or abnormal conditions

~`aĭ

EVs

BESS

eHeat

Dingle Project - Flexibility Trial Scenarios

Active Power Support (Time Scheduled or Price Responsive) Manually Triggered (Event Based) **Engagement** (Drive Behavioural Change)

esbnetworks.ie

Customer Flexibility and Prosumers

ESB NETWORKS

Flattening the energy curve

Moving energy usage away from peak times

Active System Management

Ellen Diskin

ACTIVE SYSTEM MANAGEMENT Ellen Diskin, July 2021

NETWORKS

IN BUILDING THE SYSTEM OF TOMORROW WE NEED TO RADICALLY CHANGE THE NETWORK OF TODAY

ESB Networks need to deliver on the ambitious targets set out in the ESB Networks strategy Ireland needs to deliver on the 2030 Energy targets

Customers and communities need to participate in the market Society deserves & requires security of supply while supporting a low carbon future The vehicle to deliver on these aligned requirements is ASM and will require collaboration with industry, communities and customers

Our Vision

face

Optimising the distribution network to deliver

A secure, sustainable low carbon future

Additional access options for new homes & businesses. Quick, affordable access for EVs, microgen, HPs. Better value & service from energy suppliers. More reliable electricity. Ability to be part of something bigger. Opportunity to take ownership and control.

HOMES & FARMS

Additional access options for new connections More reliable electricity New routes to market & revenue streams Opportunity to be part of the solution

Additional access options for new connections New routes to market & revenue streams Increased renewable energy used or stored

INDUSTRY

NETWORKS

BUSINESSES

BENEFITS

TRANSFORMATION – MACRO SNAPSHOT

SYSTEM OF TODAY

ACTIVE SYSTEM OF THE FUTURE

Enabling Ireland's journey to low carbon through delivering a safe and secure electrical distribution system which supports the new energy landscape where electricity is generated, stored, consumed in more localised marketplaces.

Enabling Ireland's journey to low carbon through delivering a safe and secure electrical distribution system which supports the new energy landscape where electricity is generated, stored, consumed in more localised marketplaces.

Access & Awareness

How we will work towards creating an active energy system

Technology

How we will optimise the system for renewable, customer and community participation

Market Design

How we will bring flexibility to the system by reimaging market arrangements

Enabling Ireland's journey to low carbon through delivering a safe and secure electrical distribution system which supports the new energy landscape where electricity is generated, stored, consumed in more localised marketplaces.

Register year interest to participate in bringing the network home by emailing engagement@esbnetworks.ie

Access & Awareness - HLD Deliverables & Consultation

HLD Deliverables

- 2030 Power System Requirements
- Local Visibility Plan
- Piloting Roadmap
- Consultation Framework

Key consultation topics

- Heatmaps showing when and where
- 10 year horizon scenarios
- SEAI and industry pipeline data
- Local visibility: a prerequisite for residential / small business

=5=

NETWORKS

- Role of awareness, consultation & engagement
- Consultation roadmap & channels
- Piloting criteria & objectives

Scenario snapshot: Interaction between generation and demand at a local level – Why flexibility is critical, and why localised management is critical.

Source: CAP volumes, SEAI grant data analysis, small area statistics mapping and spatial distribution scenarios, underlying demand based on ESBN standard load measurements and forecast data, behavioural / diversity of usage from TNEI analysis of EV and HP usage in GB, WEI developers' pipeline, ESBN applications register and statistical analysis of connections to date, RESS 1 results..

Access & Awareness – Preliminary feedback

Will your organisation use this information to help plan investment, innovation and customer recruitment activities?

Are there locations where you are already working with SME and domestic customers?

ESE

NETWORKS

Technology - HLD Deliverables & Consultation

HLD Deliverables

- Operations Systems Roadmap
- Platforms & Dashboards Roadmap
- Data Exchange, Control & Signals Guidance

NETWORKS

Key consultation topics

- International standards
- Best practice platforms internationally
- Timeline, components, release plan
- Functional interfaces and market interaction
- Customer visibility and empowerment
- Reporting, transparency and awareness

Technology – Preliminary feedback

Do you consider that the development of standard data exchange, control & signals requirements for small scale resources is an important step?

RedC findings, industry focus groups...

...protocols and processes needed ... it has to be compatible with devices out there.

... we definitely need standardised formats for how those systems will interact.

Grid code wasn't really written with the intention of having smaller micro scale prosumers acting in the market

...we need reassurance on technology and investment.

Market Design - HLD Deliverables & Consultation

2022

2023

2021

HLD Deliverables

- Flexibility Market Plan
- First Call to Tender
- Residential Roadmap

Key consultation topics

• Proposed flexibility product roadmap

=5=

NETWORKS

- Market framework solutions
- Flexibility enabling non-firm access
- Piloting roadmap, criteria and objectives

2025

- Potential role of sandbox treatment
- A day in the life

2024

Market Design – Preliminary feedback

First calls to tender: What criteria should we be applying to select locations

	Real world o	customer needs
	Existing demand side marke participants	t
	Existing R&D or community projects activated	
	Social good objectives	
Sandpit loc	ations	
None of the above		

Survey feedback

What sort of economic incentives will participants get?

How and when can active system management deliver non firm generator connections?

Will the flexibility be explicitly procured or implicitly incentivised?

How will a local flexibility market interact with the energy market? What role will ESBN play in managing a local flexibility market?

Enabling Ireland's journey to low carbon through delivering a safe and secure electrical distribution system which supports the new energy landscape where electricity is generated, stored, consumed in more localised marketplaces.

Thank you! Engagement@esbnetworks.ie

ESB Networks: Electrification Strategy

Implementation of our Electrification Strategy

Dr. Emma Silke

esbnetworks.ie

ESB Networks Electrification Strategy

Framed by Electrification of Heat & Transport Strategy publication January 2021

Three main themes outlined:

- **1. Removing ESB Networks Policy Barriers**
- 2. Engage-Enable-Empower Customers to Electrify
- 3. Ensuring Network Readiness

esbnetworks.ie

Overall Electrification Strategy Scope

In support of and with a focus on the Climate Action Plan:

To facilitate the connection of **at least** <u>1 million electric</u> <u>vehicles</u> and at least <u>600,000 heat pumps</u> to the distribution system by 2030

ESB Electrification Strategy Delivery

esbnetworks.ie

LV System Development Allowance / a PR5 Deliverable

€134m Allowance in the period 2021-2025

We have implemented the 1st version of our forecasting data analytics tool in the ESB cloud. This allows us to shortlist MV/LV transformers where network capacity is of concern.

Review of Design standards, EO Toolkits, and training out new LV design decision tree for future-proofing networks; work in progress Coordination of resource models, logistics to LV SI; including design time, material frameworks, and construction crews. LV System Improvement Allowance Performance Metrics & KPIs in place

Management reporting, and CRU PR5 reports

Currently implementing a proof of concept with smart metering programme to identify LV groups where voltage constraints are a problem. The results of this will be implemented into the 2nd version of our forecasting tool

NETWORKS

ESB Electrification Strategy Delivery

esbnetworks.ie

The Electrification Strategy Implementation Framework

- Re-brand the existing forum from the EV-ASHP Implementation Forum to the Electrification Strategy Implementation Group to reflect this updated structure, new mandate & our forward plan
- Move content & working methods to MS Teams to allow for better collaboration and interaction
- Refresh the monthly meeting format & agenda
 - Categorise the issues log entries into 4 principal work areas & link to the 3 main objectives of ESB Network's Electrification Strategy

Technical	Policy	Commercial & Regulatory	Stakeholder
Anything 'asset' based	Internal policy	Charging customers	External bodies
Existing network adequacy	External documents	Data issues	Internal staff
			Website

Define the objectives

- Work with the business areas to specify clear deliverables & timelines, per workstream and to action a better focus on the prioritised issues
- Clarify and redefine / clarify & support attendee roles & responsibilities
 - Per agreed priorities, ability to assign or allocate an action to an individual/section/group

esbnetworks.ie

2. Cross-company achievement of the Electrification Strategy

- The Electrification Strategy Manager & Electrification function within NDE will work to collate and coordinate cross-company information & data on the achievement & progression of various activities that are linked to the Electrification Strategy Objectives (ie. our 3 themes)
- This will be achieved by:
 - Driving and enabling a matrix structure (cross company departments) and **CFB** governance for the delivery of the Strategy for the Electrification of Heat and Transport
 - Specific H2 2021 goals:
 - Develop an action plan for 2021 calling out the priority actions for this period, with relevant metrics/KPIs for tracking & transparency of performance management
 - Prepare and disseminate performance data to senior management to relay the strategy implementation is on track
 - Prepare an augmented action plan for 2022 that details priority actions for this period, building on the framework, structure and coordination efforts stood up through the course of H2 2021
 - Commence with working on detail relevant to the preparation of an outlook plan for 2023 that considers future priority areas. Examples will be to complete a horizon scanning/awareness exercise of relevant initiatives in the electrification space from other jurisdictions that may be of use to ESB Networks
 - The 3-year outlook plan will move to address direction for the remainder of PR5

- A Stakeholder Plan will be developed to support the successful implementation of the Electrification Strategy
- The plan will detail:
 - How best to engage (medium, frequency of engagement) with relevant stakeholders
 - How best to keep stakeholders informed
 - How to communicate relevant standards
- In doing so we will seek to utilise & leverage existing stakeholder infrastructure & processes, already successfully underway across ESB Networks:
 - Innovation Stakeholder Panel
 - Align ourselves with Strategic Engagement Team plan
 - Completed and active participation in future webinars / stakeholder meetings
 - Other communication platforms
 - Relevant completed consultations

Sample external stakeholders include:

County & City Managers Association	SEAI
NSAI: EV WG & National Wiring Rules WG	DECC
Local Authority EV Charging WG	CRU

Sample internal stakeholders include:

Customer Experience Team	NCD Organisation – EOs, Design Managers, AMs, etc
ASM Project	Network Planning Teams
Innovation Team	Strategic Engagement Team

Governance & Management

of the Electrification Strategy Implementation Framework

structure &

making

esbnetworks.ie

Guiding principles to implementing CAPand by extension ESB Networks' Electrification Strategy

esbnetworks.ie

Guiding principles to implementing CAPand by extension ESB Networks' Electrification Strategy

Thank You

esbnetworks.ie

Appendix 1

ESB Networks - PR5 Innovation Topics 2021 - 2025

PR5 Submission: Future Customer Innovation Pillar

Proposed Project Area

Modelling and impact assessment of innovative microgeneration operational scenarios

Microgeneration curtailment trial at (a) high voltages and (b) high export levels

Trial of export limiting schemes

LV modelling to assess reinforcement requirements due to electrification and microgeneration

Using LV monitoring to optimise reinforcement on the LV network

Developing and trialling novel approaches to manage LV flexibility

Developing operational models for community energy/Peer to Peer

Investigating new use cases for Smart Meter data

+CityxChange (positive City Exchange) H2020 Project

Kiosk MV metering substation

Framework for the optimal coordination of Network Management Systems (NMS) and DER

Identification of network configurations for Active Network Management (ANM)

Flexibility access rights for customers - Trials of Active Network Management.

Congestion Management and Capacity Allocation using OMS

Proposed Project Area

Electrical Energy Storage (EES) - Long-term storage for firming of renewable energy

Supporting dense developments at low cost using new transformer technologies

Introduction of 1MVA Unit substation transformer with tap changer for voltage control

Investigate the use of low impedance 33kVA pole-mounted transformers

Trial of fused minipillars

Investigate the use of kW droop on charging to minimise voltage drop

Investigate the use of managed charging as contract option in certain connections

Consider use of > 244 and 230V

Wide Area Voltage Control – tighten MV voltage regulation to allow larger LV regulation

MV/LV unit substation for fast EV charging

Development of optimised LV design framework to enable a unified mobile application

PR5 Submission: Network Resilience Innovation Pillar

Proposed Project Area
Developing a digital capability for smart grid applications
Investigate climate adaptation approaches
Strengthening the resilience of future networks
Development of communications vision and control the use of ~400MHz smart grid spectrum
Network impact assessment of microgrids
Storm Resilience for overhead networks
Assess and monitor harmonic levels on LV distribution networks for low carbon technologies
Enabling reactive power system services from distributed generation (Nodal Controller)
Using Average Wind Speed Measurements to Increase Real Time Line Ratings Nationally